

National Environmental Monitoring Conference August 7, 2014

Stephen T. Zeiner, CEAC Rock J. Vitale, CEAC Gary P. Yakub, CQA

- Background
- First Investigation Details and Observations
- Follow-up Activities Details and Observations
- Outcome of Investigation
- Summary

Background

- For a long-term monitoring project, whole-volume, double-blind performance test (PT) sample submitted semi-annually
- Polynuclear aromatic hydrocarbons (PAHs) were driving compounds
- PT sample that contained benzo(a)pyrene, benzo(b)fluoranthene, and naphthalene
- PT sample was a custom made standard

Benzo[a]pyrene

Benzo[b]fluoranthene

naphthalene

Background

- Lab A performing well (approximately 20 years of PT sample success for all three compounds)
- Then three straight PT sample failures for benzo(a)pyrene and benzo(b)fluoranthene
- The change in PT performance sparked the investigations summarized in this presentation

- PT Vendor generated eight, 1-Liter, whole-volume custom samples
- Two 1-Liter samples were sent to Lab A for benzo(a)pyrene, benzo(b)fluoranthene, and naphthalene analysis as double-blind sample
- Six 1-Liter samples were sent to Referee Lab for benzo(a)pyrene, benzo(b)fluoranthene, and naphthalene analysis as single-blind samples
- Lab A received a whole-volume, off-the-shelf PT sample for polynuclear aromatic hydrocarbon (PAH) analysis as a single-blind sample

Sample ID	PAH	Result Pass/Fail
Custom-A	Benzo(a)pyrene	Fail Low
Custom-A	Benzo(b)fluoranthene	Fail Low
Custom-A	Naphthalene	Pass

Sample ID	PAH	Result Pass/Fail
Custom-1	Benzo(a)pyrene	Pass
Custom-1	Benzo(b)fluoranthene	Pass
Custom-1	Naphthalene	Pass
Custom-2	Benzo(a)pyrene	Pass
Custom-2	Benzo(b)fluoranthene	Pass
Custom-2	Naphthalene	Pass

Sample ID	PAH	Result Pass/Fail
Custom-3*	Benzo(a)pyrene	Fail Low
Custom-3*	Benzo(b)fluoranthene	Fail Low
Custom-3*	Naphthalene	Pass

* Referee Lab notified of the failure, and passed benzo(a)pyrene and benzo(b)fluoranthene upon a second preparation and analysis.

- Lab A failures consistent with prior couple of sample rounds
- Referee Laboratory passed two standards indicating that the standard was correctly prepared
- Referee Laboratory failures corresponded to Lab A indicating that the failures may be related to method or chemistry of the extraction

Single-Blind PT Standard Results

		Result (Pass/ Fail)	Result (Pass/Fail) Method 8270C
PAH Compound	Rings	Method 8270C	SIM
Naphthalene	2	Pass	Pass
Acenaphthene	3	Pass	Pass
Acenaphthylene	3	Pass	Pass
Fluorene	3	Pass	Pass
Phenanthrene	3	Pass	Pass
Anthracene	3	Fail low	Fail low
Pyrene	4	Pass	Fail low
Fluoranthene	4	Pass	Fail low

Single-Blind PT Standard Results

		Result (Pass/	
		Fail)	Result (Pass/Fail)
PAH Compound	Rings	Method 8270C	Method 8270C SIM
Chrysene	4	Fail low	Fail low
Benzo(a)anthracene	4	Fail low	Fail low
Benzo(a)pyrene	5	Fail low	Fail low
Benzo(b)fluoranthene	5	Fail low	Fail low
Benzo(k)fluoranthene	5	Fail low	Fail low
Dibenz(a,h)anthracene	5	Fail low	Fail low
Benzo(g,h,i)perylene	6	Fail low	Fail low
Indeno(1,2,3-cd)pyrene	6	Fail low	Fail low

- Lighter (2-3 ring) PAHs recovered generally acceptably
- Heavier (4-6 ring) PAH recovered generally unacceptably
- Performance suspected of having a correlation to number of rings in the PAH
- Lighter PAHs are more likely to be in the solution
- Heavier PAHs are more likely to adhere to the container
- Standard preparation into reagent-free water, no particulates or TSS for heavier PAHs to adhere to

- How were the PT samples made?
- Review of preparation and analytical procedures between laboratories
- Lab A requested to review changes from passing to failing results
- Items requested for review: personnel, materials, procedures, etc.
- Follow-up actions were based on outcome of the laboratory information

PT Sample Preparation

- The PT vendor generated whole-volume samples utilizing analyte-free water
- A custom standard mixture with only benzo(a)pyrene, benzo(b)fluoranthene, and naphthalene was prepared for several rounds as a stock standard in methanol in sealed 2 mL ampules

PT Sample Preparation

- 1-Liter amber bottles filled with analyte-free water were refrigerated over-night prior to the addition of the stock standard.
- On the day of shipment, the PT vendor adds the standard by injecting the standard approximately 1 inch below the surface of the water. The bottle is capped and inverted to mix the sample.

Preparation and Analytical Methods

Lab A:

- Sample extraction via SW-846 Method 3510C (Separation Funnel)
- Extract analysis via SW-846 Method 8270C Full Scan for double-blind and single-blind
- Extract analysis via SW-846 Method 8270C Selective Ion Monitoring (SIM) for single-blind

- Sample extraction via SW-846 Method 3520C (Continuous Liquid-Liquid)
- Extract analysis via SW-846 Method 8270C Full Scan

- No difference in preparation or analytical procedures
- No difference in vendors or quality of materials
- Some personnel changes but different personnel for each PT preparation and analysis
- Suspects sample transfer was the issue
- Proposed internal study to evaluate transfer issue

- Generated 2 Control Samples at 20 ug/L in 1-Liter Amber Containers
- Generated 2 Control Samples at 50 ug/L in 1-Liter Amber Containers
- Stored in refrigerator overnight until preparation via separatory funnel extraction
- 2 sample transfers included solvent rinse by swirl in the container
- 2 sample transfers included solvent rinse by cap and container inversion
- All extracts analyzed by SW-846 Method 8270C

Sample Transfer Study Results

	20 ug/L Swirl		20 ug/L Cap	
Compound	Result	%R	Result	%R
Benzo(a)pyrene	8.9	45	17.0	85
Benzo(b)fluoranthene	9.9	50	18.2	91
Naphthalene	15.3	76	15.6	78

 Cap and invert extraction technique shows greatly improved extraction over the swirl technique.

Sample Transfer Study Results

	50 ug/L Swirl		50 ug/L Cap	
Compound	Result	%R	Result	%R
Benzo(a)pyrene	36.9	74	49.6	99
Benzo(b)fluoranthene	40.6	81	57.4	115
Naphthalene	49.6	99	52.8	106

 Cap and invert extraction technique shows greatly improved extraction over the swirl technique.

- Based on Lab A findings, the Referee Lab evaluated its sample transfer procedure
- Referee Lab was not performing a container rinse for the SW-846 Method 3520 preparation
- Referee Lab investigated use of container rinse with SW-846 Method 3520 preparation

Follow-up Activities

- The problem was identified as the sample transfer
- Lab A and Referee Lab updated procedures to be more detailed on the container rinse
- Additional whole-volume, double-blind PT samples to Lab A
- Additional whole-volume, single-blind PT samples to Referee Lab
- Both facilities have provided two rounds of acceptable PT results

Summary

- Long term project with double-blind PT samples
- Lab A results fell out of criterion for benzo(a)pyrene and benzo(b)fluoranthene for a couple rounds
- Appears that heavier PAHs were adhering to the container
- Suspected sample transfer process
- Lab A performed a small experiment to confirm transfer was issue

- Lab A and Referee Lab updated procedures to include thorough container rinse
- The slight change produced great improvement in performance
- Investigation into PT failures can be more than just evaluation of the calibration and other system performance indicators

Environmental Standards, Inc. "Setting the Standards for Innovative Environmental Solutions"

Headquarters 1140 Valley Forge Road | PO Box 810 | Valley Forge, PA 19482 | 610.935.5577
Virginia 1208 East Market Street | Charlottesville, VA 22902 | 434.293.4039
Tennessee 8331 East Walker Springs Lane, Suite 402 | Knoxville, TN 37923 | 865.376.7590
Texas 2000 S. Dairy Ashford Road, Suite 450 | Houston, TX 77077 | 281.752.9782
Web www.envstd.com | E-mail solutions@envstd.com